LT3570
11
3570fb
to 1.2A at DC2 = 0.8. The maximum output current is a
function of the chosen inductor value:
 
 
I
OUT2(MAX)
=I
LIM2

L2
2
=1.5" 10.25"DC2
(
)

L2
2
Choosing an inductor value so that the ripple current is
small will allow a maximum output current near the switch
current limit.
One approach to choosing the inductor is to start with the
simple rule given above, look at the available inductors
and choose one to meet cost or space goals. Then use
these equations to check that the LT3570 will be able to
deliver the required output current. Note again that these
equations assume that the inductor current is continu-
ous. Discontinuous operation occurs when I
OUT2
 is less
than 擨
L2
/2.
Boost Inductor Selection
For most applications the inductor will fall in the range
of 2.2糎 to 22糎. Lower values are chosen to reduce
physical size of the inductor. Higher values allow more
output current because they reduce peak current seen by
the power switch, which has a 1.5A current limit. Higher
values also reduce input ripple voltage and reduce core
loss. The following procedure is suggested as a way of
choosing a more optimum inductor.
Assume that the average inductor current for a boost
converter is equal to the load current times V
OUT1
/V
IN1
 
and decide whether or not the inductor must withstand
continuous overload conditions. If average inductor cur-
rent at maximum load current is 0.5A, for instance, a 0.5A
inductor may not survive a continuous 1.5A overload
condition. Also be aware that boost converters are not
short-circuit protected, and that under short conditions,
inductor current is limited only by the available current
of the input supply.
Calculate peak inductor current at full load current to en-
sure that the inductor will not saturate. Peak current can
be signi cantly higher than output current, especially with
smaller inductors and lighter loads, so dont omit this step.
Powdered iron cores are forgiving because they saturate
softly, whereas ferrite cores saturate abruptly. Other
core materials fall somewhere in between. The following
formula assumes continuous mode operation but it errs
only slightly on the high side for discontinuous mode, so
it can be used for all conditions.
 
 
I
PEAK1
=
I
OUT1
"V
OUT1
V
IN1
+
V
IN1
V
OUT1
V
IN1
(
)
2"f"L"V
OUT1
Make sure that I
PEAK1
 is less than the switch current I
LIM1
.
I
LIM1
 is at least 1.5A at low duty cycles and decreases
linearly to 1.2A at DC1 = 0.8. The maximum switch current
limit can be calculated by the following formula:
  I
LIM1
 = 1.5 " (1  0.25 " DC1)
where DC1 is the duty cycle and is de ned as:
   
DC1=1
V
IN1
V
OUT1
Remember also that inductance can drop signi cantly with
DC current and manufacturing tolerance. Consideration
should also be given to the DC resistance of the inductor
as this contributes directly to the ef ciency losses in the
overall converter. Table 1 lists several inductor vendors
and types that are suitable.
Buck Output Capacitor Selection
For 5V and 3.3V outputs, a 10糉, 6.3V ceramic capacitor
(X5R or X7R) at the output results in very low output volt-
age ripple and good transient response. For lower voltages,
10糉 is adequate for ripple requirements but increasing
C
OUT
 will improve transient performance. Other types and
values will also work; the following discusses tradeoffs in
output ripple and transient performance.
The output capacitor  lters the inductor current to gener ate
an output with low voltage ripple. It also stores energy in
order to satisfy transient loads and stabilize the LT3570s
control loop. Because the LT3570 operates at a high
frequency, minimal output capacitance is necessary. In
addition, the control loop operates well with or without
the presence of output capacitor series resistance (ESR).
Ceramic capacitors, which achieve very low output ripple
APPLICATIONS INFORMATION
相关PDF资料
LT3645HMSE#TRPBF IC REG DL BUCK/LINEAR 12-MSOP
LT3694IFE-1#TRPBF IC REG TRPL BUCK/LINEAR 20TSSOP
LT4220IGN#TR IC CTLR HOTSWAP DUAL 16-SSOP
LT4250LCN8 IC CONTRLR HOT SWAP NEG 48V 8DIP
LT4254CGN IC CTRLR HOTSWAP POSVOLT 16SSOP
LT4256-1IS8#TRPBF IC CTRLR HOTSWAP HV LATCH 8SOIC
LTC1392IS8#TRPBF IC DATA ACQ SYSTEM 10BIT 8-SOIC
LTC1421ISW-2.5#PBF IC CONTROLLER HOT SWAP 24-SOIC
相关代理商/技术参数
LT3570IFE-PBF 制造商:LINER 制造商全称:Linear Technology 功能描述:1.5A Buck Converter, 1.5A Boost Converter and LDO Controller
LT3570IFE-TRPBF 制造商:LINER 制造商全称:Linear Technology 功能描述:1.5A Buck Converter, 1.5A Boost Converter and LDO Controller
LT3570IUF#PBF 功能描述:IC REG TRPL BCK/BST/LINEAR 24QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 线性 + 切换式 系列:- 标准包装:2,500 系列:- 拓扑:降压(降压)同步(3),线性(LDO)(2) 功能:任何功能 输出数:5 频率 - 开关:300kHz 电压/电流 - 输出 1:控制器 电压/电流 - 输出 2:控制器 电压/电流 - 输出 3:控制器 带 LED 驱动器:无 带监控器:无 带序列发生器:是 电源电压:5.6 V ~ 24 V 工作温度:-40°C ~ 85°C 安装类型:* 封装/外壳:* 供应商设备封装:* 包装:*
LT3570IUF#TRPBF 功能描述:IC REG TRPL BCK/BST/LINEAR 24QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 线性 + 切换式 系列:- 标准包装:2,500 系列:- 拓扑:降压(降压)同步(3),线性(LDO)(2) 功能:任何功能 输出数:5 频率 - 开关:300kHz 电压/电流 - 输出 1:控制器 电压/电流 - 输出 2:控制器 电压/电流 - 输出 3:控制器 带 LED 驱动器:无 带监控器:无 带序列发生器:是 电源电压:5.6 V ~ 24 V 工作温度:-40°C ~ 85°C 安装类型:* 封装/外壳:* 供应商设备封装:* 包装:*
LT3570IUF-PBF 制造商:LINER 制造商全称:Linear Technology 功能描述:1.5A Buck Converter, 1.5A Boost Converter and LDO Controller
LT3570IUF-TRPBF 制造商:LINER 制造商全称:Linear Technology 功能描述:1.5A Buck Converter, 1.5A Boost Converter and LDO Controller
LT3571EUD#PBF 功能描述:IC REG BOOST ADJ 0.47A 16QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:250 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V 输入电压:2.05 V ~ 6 V PWM 型:电压模式 频率 - 开关:2MHz 电流 - 输出:500mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:6-UFDFN 包装:带卷 (TR) 供应商设备封装:6-SON(1.45x1) 产品目录页面:1032 (CN2011-ZH PDF) 其它名称:296-25628-2
LT3571EUD#TRPBF 功能描述:IC REG BOOST ADJ 0.47A 16QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V,1.5V,1.8V,2.5V 输入电压:2.7 V ~ 20 V PWM 型:- 频率 - 开关:- 电流 - 输出:50mA 同步整流器:是 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:10-TFSOP,10-MSOP(0.118",3.00mm 宽)裸露焊盘 包装:带卷 (TR) 供应商设备封装:10-MSOP 裸露焊盘